文章摘要
刘唯智,徐明,陈曦,等.基于人工智能的膝骨关节炎疼痛进展轨迹聚类分析.骨科,2026,17(1): 17-21.
基于人工智能的膝骨关节炎疼痛进展轨迹聚类分析
AI-based clustering analysis of pain progression trajectories in knee osteoarthritis
投稿时间:2025-11-03  
DOI:10.3969/j.issn.1674-8573.2026.01.004
中文关键词: 膝骨关节炎  疼痛进展轨迹  人工智能  时间序列聚类  动态时间规整
英文关键词: Knee osteoarthritis  Pain progression trajectory  Artificial intelligence  Time series clustering  Dynamic time warping
基金项目:四川省科技计划项目(2025YFHZ0110)
作者单位E-mail
刘唯智 四川大学华西临床医学院成都 610041  
徐明 四川大学华西临床医学院成都 610041  
陈曦 四川大学华西医院运动医学中心成都 610041  
于千益 四川大学华西临床医学院成都 610041  
吕一飞 四川大学华西临床医学院成都 610041  
王力 四川大学华西临床医学院成都 610041  
游茗柯 四川大学华西临床医学院成都 610041  
李康 四川大学华西医院华西生物医学大数据中心成都 610041  
李箭 四川大学华西医院运动医学中心成都 610041  
聂涌 四川大学华西医院骨科成都 610041  
周宗科 四川大学华西医院骨科成都 610041 zhouzongke@scu.edu.cn 
摘要点击次数: 14
全文下载次数: 0
中文摘要:
      目的 利用人工智能时间序列聚类方法识别膝骨关节炎病人疼痛进展轨迹,并分析不同轨迹的基线人口学、心理学及生物力学特征差异。方法 研究基于美国骨关节炎倡议组织数据库,纳入右膝在基线、12、24、36及48个月具有完整或可插补膝关节损伤和骨关节炎评分(knee injury and osteoarthritis outcome score,KOOS)疼痛评分的受试者。将评分转换为疼痛强度指标(疼痛强度=100-KOOS疼痛评分),采用动态时间规整结合聚类算法进行无监督聚类。最终聚类数由多指标综合评分确定。不同类组间差异采用方差分析或秩和检验,事后比较经多重校正。结果 研究共纳入4 345例受试者,综合评分推荐聚类数为2,识别出两种疼痛进展轨迹(1 771例与2 574例)。基线差异显示:椅站时间(F=33.152,P<0.001)、股四头肌力量(F=8.249,P=0.004)、400米步行时间(F=6.860,P=0.009)、吸烟量(F=6.019,P=0.014)及抑郁评分(F=5.871,P=0.015)在轨迹间差异显著,两轨迹膝骨关节炎影像分级分布上也有明显差别(χ2=13.000,P=0.011)。事后比较提示,进展更加迅速的病人群体抑郁程度更高、结构性改变更明显、吸烟负荷更大且肌力更低。结论 人工智能时间序列聚类可有效识别膝骨关节炎疼痛进展的两种主要轨迹,揭示疼痛演变的动态差异。持续加重者多伴抑郁、肌力下降及功能受限,而功能与肌力较好者疼痛改善倾向更显著。
英文摘要:
      Objective To explore the use of artificial intelligence time series clustering methods to identify pain progression trajectories in patients with knee osteoarthritis (KOA) and analyze baseline demographic, psychological, and biomechanical differences across these trajectories. Methods The study was based on the publicly available Osteoarthritis Initiative (OAI) database, including participants with complete or imputed knee injury and osteoarthritis outcome score (KOOS) pain scores for their right knee at baseline, 12, 24, 36, and 48 months. Pain scores were converted into pain intensity indicators (Pain intensity=100-Koos pain Score). Dynamic time warping combined with clustering algorithms was used for unsupervised clustering. The final number of clusters was determined by a composite scoring approach. Differences between groups were assessed using analysis of variance (ANOVA) or rank-sum tests, with post-hoc comparisons adjusted for multiple testing. Results A total of 4,345 participants were included. The composite score suggested two clusters, identifying two distinct pain progression trajectories (1,771 participants in one group and 2,574 in the other). Baseline differences showed significant variations in sitting-stand time (F=33.152, P<0.001), quadriceps strength (F=8.249, P=0.004), 400-meter walking time (F=6.860, P=0.009), smoking pack-years (F=6.019, P=0.014), and depression scores (F=5.871, P=0.015) between the trajectories. The two trajectories also showed significant differences in the distribution of imaging grades for knee osteoarthritis (χ2=13.000, P=0.011). Post-hoc comparisons indicated that the group with more rapid progression had higher depression scores, more pronounced structural changes, greater smoking burden, and lower muscle strength. Conclusion Artificial intelligence time series clustering effectively identifies two major pain progression trajectories in KOA, revealing dynamic differences in pain evolution. Patients with sustained worsening of pain are more likely to experience depression, muscle weakness, and functional limitations, while those with better function and muscle strength tend to show greater pain improvement.
查看全文   下载PDF阅读器
关闭