文章摘要
何明长,诸灵祺,黄连水,等.生物型股骨长柄在股骨转子间内外侧壁骨折应用的生物力学研究.骨科,2025,16(3): 238-242.
生物型股骨长柄在股骨转子间内外侧壁骨折应用的生物力学研究
Biomechanical study on the application of biological femoral long stem in intertrochanteric fractures
投稿时间:2025-02-08  
DOI:10.3969/j.issn.1674-8573.2025.03.008
中文关键词: 股骨转子间  骨折  生物型  股骨长柄  重建  生物力学
英文关键词: Femoral trochanter  Fracture  Biological type  Femoral long stem  Reconstruction  Biomechanics
基金项目:国家骨科与运动康复临床医学研究中心创新基金项目(2023-NCRC-CXJJ-ZC-01);福建省自然科学基金项目(2024J011581);2020年第九〇九医院自主科研创新重点项目(22ZD003)
作者单位E-mail
何明长 第九〇九医院(厦门大学附属东南医院)骨科福建漳州 363000  
诸灵祺 第九〇九医院(厦门大学附属东南医院)骨科福建漳州 363000  
黄连水 第九〇九医院(厦门大学附属东南医院)骨科福建漳州 363000  
缪建云 第九〇九医院(厦门大学附属东南医院)骨科福建漳州 363000  
周亮 第九〇九医院(厦门大学附属东南医院)骨科福建漳州 363000  
翟文亮 第九〇九医院(厦门大学附属东南医院)骨科福建漳州 363000 wlzhai1971@xmu.edu.cn 
摘要点击次数: 33
全文下载次数: 13
中文摘要:
      目的 探讨生物型股骨长柄治疗股骨转子间内外侧壁骨折的生物力学稳定性。方法 取Sawbones人工股骨标准骨模型制备三组模型,分为正常组、骨折组(股骨转子间内外侧壁骨折)和重建组(经钢丝捆扎内外侧壁骨折),每组6根,并分别植入生物型股骨长柄,对三组模型进行轴向压缩实验(最大1 400 N,速度30 N/s)和扭转实验(角度为0~1°,速率0.5°/s),计算不同载荷下的股骨近端轴向下沉位移、轴向压缩最大刚度和扭转刚度情况。结果 随着载荷增加,三组模型轴向下沉位移亦随之增加。1 400 N时,骨折组轴向下沉位移为(0.64±0.46) mm,重建组为(0.47±0.40) mm,与正常组[(0.43±0.35) mm]比较,差异均无统计学意义(P>0.05)。三种模型在1 400 N载荷下股骨近端轴向下沉位移均不超过1 mm。骨折组轴向压缩最大刚度为(2 188.52±152.24) N/m,重建组为(3 085.54±255.82) N/m,骨折组与正常组[(3 265.39±258.43) N/m]比较,差异有统计学意义(t=8.791,P<0.001);重建组与正常组比较,差异无统计学意义(t=1.215,P=0.253)。骨折组扭转1°的扭转刚度为(18.17±0.78) Nm/deg,重建组为(18.85±0.48) Nm/deg,两组与正常组[(19.05±0.63) Nm/deg]比较,差异均无统计学意义(P>0.05)。结论 股骨近端转子间骨折因解剖完整性破坏,使用生物型股骨长柄固定初始稳定性良好,辅助钢丝捆扎重建骨折端,可提高假体稳定性。股骨转子间内外侧壁骨折使用生物型股骨长柄是一种安全、有效的选择。
英文摘要:
      Objective To explore the biomechanical stability of biological type femoral long stem in treating intertrochanteric fractures of the femur. Methods The Sawbones artificial femur standard bone models were divided into the normal group, the fracture group (femoral trochanteric intertrochanteric fracture group), and the reconstruction group (femoral trochanteric intertrochanteric fracture with steel binding group), with 6 models in each group. The biological femoral long stem was implanted respectively. The three groups of models were subjected to axial compression test (1 400 N, speed 30 N/s) and torsion test (angle 0-1°, rate 0.5°/s). The axial sinking displacement of the proximal femur under different loads was recorded. And the maximum axial compression stiffness and torsional stiffness were calculated. Results The sinking displacement of the proximal femur increased with the increase of load. At 1 400 N, the axial displacement of the fracture group was (0.64±0.46) mm, while that of the reconstruction group was (0.47±0.40) mm. Compared with the normal group [(0.43±0.35) mm], the differences were not statistically significant (P>0.05). The axial displacement of the proximal femur under 1 400 N load for all three models did not exceed 1 mm. The maximum axial compression stiffness of the fracture group was (2 188.52±152.24) N/m, while that of the reconstruction group was (3 085.54±255.82) N/m. The difference between the fracture group and the normal group [(3 265.39±258.43) N/m] was statistically significant (t=8.791, P<0.001). There was no statistically significant difference between the reconstruction group and the normal group (t=1.215, P=0.253). The torsional stiffness of the fracture group with a torsion of 1 ° was (18.17±0.78) Nm/deg, while that of the reconstruction group was (18.85±0.48) Nm/deg, and there was no statistically significant difference between the two groups (fracture group and reconstruction group) and the normal group [(19.05±0.63) Nm/deg] (P>0.05). Conclusion Intertrochanteric fractures of the proximal femur have good initial stability with the use of a biological long-stem femoral prosthesis, and the use of auxiliary steel wire binding to reconstruct the fracture end can improve the stability of the prosthesis. The application of biological femoral long stem in intertrochanteric fractures of the femur is a safe and effective choice.
查看全文   下载PDF阅读器
关闭