文章摘要
王松,张鑫,肖箫,等.联合椎体骨质量构建一个新型绝经后女性骨质疏松性椎体压缩性骨折的预测模型.骨科,2023,14(5): 393-400.
联合椎体骨质量构建一个新型绝经后女性骨质疏松性椎体压缩性骨折的预测模型
Construction of a Novel Predictive Model of Vertebral Compression Fracture in Combination with VBQ in Postmenopausal Women
投稿时间:2023-05-04  
DOI:10.3969/j.issn.1674-8573.2023.05.001
中文关键词: 骨质疏松性椎体压缩骨折  骨质疏松症  椎体骨质量  定量计算机断层扫描  预测模型
英文关键词: Osteoporotic vertebral compression fractures  Osteoporosis  Vertebral body quality  Quantitative computed tomography  Predictive models
基金项目:国家自然科学基金(82272488)
作者单位E-mail
王松 暨南大学第二临床医学院广东深圳 518020  
张鑫 暨南大学第二临床医学院广东深圳 518020  
肖箫 深圳市人民医院(南方科技大学第一附属医院)脊柱外科广东深圳 518020  
汪洪宇 深圳市人民医院(南方科技大学第一附属医院)脊柱外科广东深圳 518020  
郑俊勇 暨南大学第二临床医学院广东深圳 518020  
杨大志 深圳市人民医院(南方科技大学第一附属医院)脊柱外科广东深圳 518020深圳市骨科研究所广东深圳 518020深圳市运动系统组织与功能重建重点实验室广东深圳 518020  
龙厚清 深圳市人民医院(南方科技大学第一附属医院)脊柱外科广东深圳 518020深圳市骨科研究所广东深圳 518020深圳市运动系统组织与功能重建重点实验室广东深圳 518020  
彭松林 暨南大学第二临床医学院广东深圳 518020深圳市人民医院(南方科技大学第一附属医院)脊柱外科广东深圳 518020深圳市骨科研究所广东深圳 518020深圳市运动系统组织与功能重建重点实验室广东深圳 518020 songlin824@gmail.com 
摘要点击次数: 1891
全文下载次数: 21
中文摘要:
      目的 联合对骨、骨微结构及椎旁肌肉的高效评估工具,建立绝经后女性骨质疏松性椎体压缩性骨折(osteoporotic vertebral compression fracture,OVCF)的新型预测模型。方法 回顾性分析2020年11月至2022年11月就诊于深圳市人民医院脊柱外科的210例绝经后女性病人,将其随机分为模型构建集和验证人群集,组内根据是否发生OVCF分为OVCF组和N-OVCF组。模型构建集通过单因素统计分析,筛选出具有统计学差异的参数进行二元Logistic回归分析及受试者工作特征曲线(ROC)对比。根据统计结果,纳入独立危险因素建立预测模型,绘制Nomogram图。最后,通过比较模型构建集及验证人群集的C指数、校准曲线、决策性曲线验证模型的预测能力。结果 单因素统计分析显示骨密度、定量CT值(QCT)、椎体骨质量(VBQ)、腰旁肌最大横截面积(CSAPS)、多裂肌与竖脊肌最大横截面积(CSAES+MF)、年龄、骨特异性碱性磷酸酶(BAP)、身体质量指数(BMI)与绝经后女性发生OVCF有关(P<0.05)。二元Logistic回归分析结果显示骨密度(OR=0.266,P=0.003)、QCT值(OR=0.965,P=0.008)、VBQ(OR=4.346,P=0.044)、CSAES+MFOR=0.806,P=0.028)、CSAPSOR=0.588,P=0.025)为绝经后女性发生OVCF的独立危险因素。根据ROC曲线分析,计算曲线下面积(AUC),骨密度(AUC=0.931,P<0.001)、QCT(AUC=0.890,P<0.001)、VBQ(AUC=0.784,P<0.001)、CSAES+MF(AUC=0.697,P<0.001)、CSAPS(AUC=0.830,P<0.001)对OVCF的发生均有一定的预测效力,而通过ROC曲线对比发现骨密度、QCT、CSAPS的曲线下面积(AUC)更高(P<0.05)。最终构建出的Nomogram图C指数为0.964(0.935~0.993),验证人群组C指数为0.872(0.802~0.941),通过绘制校准曲线、决策性曲线结果显示模型的拟合度及临床效用较好。结论 本次研究发现骨密度、QCT、VBQ、CSAES+MF、CSAPS五个参数为绝经后女性病人发生OVCF的独立危险因素,通过这五个参数绘制了Nomogram图,建立了一个临床效用性较好、预测效率高的适用于中国绝经后女性人群的新型OVCF预测模型。
英文摘要:
      Objective To establish a novel prediction model for osteoporotic vertebral compression fracture (OVCF) in postmenopausal women by combining the efficient assessment tools for bone, bone microstructure and paravertebral muscle. Methods The retrospective study collected 210 postmenopausal female patients who attended the Department of Spine Surgery of Shenzhen People's Hospital (the Second Clinical Medical College of Jinan University and the First Affiliated Hospital of Southern University of Science and Technology) from November 2020 to November 2022. The patients were randomly divided into model set and validator set, and the set was divided into non-OVCF group and OVCF group according to whether OVCF occurred. The statistically different parameters were screened out from the Modeling population through univariate statistical analysis for binary Logistic regression analysis and ROC curve comparison. According to the statistical results, the prediction model was established by incorporating sensitive parameters and the Nomogram plot was drawn. Finally, the C-index, calibration curve and decision curve analyses of the model construction set and the validator set were compared to verify the predictive ability of the model. Results Univariate statistical analysis showed that bone mineral density (BMD), quantitative computed tomography (QCT), vertebral body quality (VBQ), cross section area of psoas muscle (CSAPS), cross section area of erector spinae muscle and multifidus muscle (CSAES+MF), age, bone-specific alkaline phosphatase (BAP), body mass index (BMI) were associated with OVCF in postmenopausal women (P<0.05). Binary Logistic regression analysis showed that BMD (OR=0.266, P=0.003), QCT (OR=0.965, P=0.008), VBQ (OR=4.346, P=0.044), CSAES+MF (OR=0.806, P=0.028) and CSAPS (OR=0.588, P=0.025) were independent risk factors for OVCF in postmenopausal women. According to ROC curve analysis, BMD (AUC=0.931, P<0.001), QCT (AUC=0.890, P<0.001), VBQ (AUC=0.784, P<0.001), CSAES+MF (AUC=0.697, P<0.001) and CSAPS (AUC=0.830, P<0.001) all had a certain predictive effect on the occurrence of OVCF. The AUC of BMD, QCT and CSAPS was found to be higher (P<0.05) through ROC curve comparison. Finally, the C-index of the Nomogram plot was 0.964 (0.935-0.993), and the C-index of the Validator group was 0.872 (0.802-0.941), and the calibration curve and decision-making curve results showed that the fit and clinical utility of the model were good. Conclusion In this study, we found that BMD, QCT, VBQ, CSAES+MF and CSAPS were independent risk factors for OVCF in postmenopausal women, and a Nomogram plot was drawn through the above parameters, and a new OVCF prediction model with good clinical utility and high prediction efficiency was established for postmenopausal women in China.
查看全文   下载PDF阅读器
关闭