文章摘要
石淇允,李无阴,张颖,等.股骨近端骨折类型的影响因素分析.骨科,2020,11(1): 19-22,29.
股骨近端骨折类型的影响因素分析
Factors influencing types of proximal femoral fractures
投稿时间:2019-05-20  
DOI:10.3969/j.issn.1674-8573.2020.01.004
中文关键词: 股骨颈骨折  股骨转子间骨折  Logistic回归分析
英文关键词: Femoral neck fracture  Intertrochanteric fractures  Logistic regression
基金项目:国家自然科学基金(81874477)
作者单位E-mail
石淇允 湖南中医药大学长沙 410208  
李无阴 河南省洛阳正骨医院髋部诊疗中心河南洛阳 471002 lyzglwy2017@126.com 
张颖 河南省洛阳正骨医院髋部诊疗中心河南洛阳 471002  
田涛涛 河南省洛阳正骨医院髋部诊疗中心河南洛阳 471002  
谭旭仪 湖南中医药研究院长沙 410006  
段嘉豪 湖南中医药大学长沙 410208  
王浩翔 湖南中医药大学长沙 410208  
摘要点击次数: 4608
全文下载次数: 2556
中文摘要:
      目的 探讨影响股骨近端骨折类型的相关因素。方法 对2016年1月至2018年9月河南省洛阳正骨医院髋部诊疗中心297例股骨近端骨折病人的临床资料进行回顾性分析,根据入院时第一诊断结果将其分为股骨颈骨折组与股骨转子间骨折组,其中股骨颈骨折病人206例(69.4%),股骨转子间骨折91例(30.6%)。先通过单因素分析比较两组的性别、年龄、身高、体重、身体质量指数(body mass index, BMI)、生活习惯(吸烟、酗酒)、合并内科疾病(高血压、糖尿病、冠心病、卒中病史、恶性肿瘤、既往骨折史)、股骨颈骨密度、转子间骨密度、全髋骨密度、颈干角、所受能量等因素,再采用Logistic回归分析确定其影响因素。结果 两组间年龄、股骨颈骨密度、转子间骨密度、全髋骨密度、颈干角、所受能量比较,差异均有统计学意义(P均<0.05)。Logistic回归分析发现,年龄[OR=1.071,95% CI(1.038,1.106),P<0.001]、全髋骨密度[OR=0.004,95% CI(0.000,0.356),P=0.016]、颈干角[OR=0.915,95% CI(0.881,0.951),P<0.001]为股骨近端骨折类型的影响因素。结论 年龄越大、全髋骨密度越低、颈干角越大的病人,更容易发生股骨颈骨折。
英文摘要:
      Objective To investigate the related factors affecting the types of proximal femoral fracture. Methods The clinical data of 297 patients with proximal femoral fractures treated at the Hip Treatment Center of Luoyang Orthopaedic Hospital of Henan Province from January 2016 to September 2018 were retrospectively analyzed. According to the initial diagnosis results at the time of admission, the patients were divided into the femoral neck fracture group (206 cases, 69.4%) and the intertrochanteric fracture group (91 cases, 30.6%). Univariate analysis was used to compare factors such as gender, age, height, weight, body mass index (BMI), lifestyle (smoking, alcohol abuse), and medical conditions (hypertension, diabetes, coronary heart disease, history of stroking, malignancy, previous fracture history), femoral neck bone density, intertrochanteric bone density, total hip bone density, neck shaft angle, and energy received between the two groups. Logistic regression analysis was used to determine the independent influencing factors. Results The data between the two groups showed that age, femoral neck bone mineral density, intertrochanter bone mineral density, total hip bone density, neck shaft angle, and energy received were statistically significant (P<0.05 for all). Logistic regression analysis revealed that age [OR=1.071, 95% CI(1.038, 1.106), P<0.001], total hip bone density [OR=0.004, 95% CI(0.000, 0.356), P=0.016], neck shaft angle [OR=0.915, 95% CI(0.881, 0.951), P<0.001]were the independent factors influencing the proximal femoral fractures. Conclusion Patients with older age, lower total hip bone density, and larger femoral neck shaft angle are more likely to have femoral neck fractures.
查看全文   下载PDF阅读器
关闭